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ABSTRACT: High density lipoprotein (HDL) particles are blood-borne complexes
whose plasma levels have been associated with protection from cardiovascular disease
(CVD). Recent studies have demonstrated the existence of distinct HDL subspecies;
however, these have been difficult to isolate and characterize biochemically. Here, we
present the first report that employs a network-based approach to systematically infer
HDL subspecies. Healthy human plasma was separated into 58 fractions using our
previously published three orthogonal chromatography techniques. Similar local
migration patterns among HDL proteins were captured with a novel similarity score,
and individual comigration networks were constructed for each fraction. By employing a
graph mining algorithm, we identified 183 overlapped cliques, among which 38 were
further selected as candidate HDL subparticles. Each of these 38 subparticles had at least
two literature supports. In addition, GO function enrichment analysis showed that they
were enriched with fundamental biological and CVD protective functions. Furthermore,
gene knockout experiments in mouse model supported the validity of these subparticles
related to three apolipoproteins. Finally, analysis of an apoA-I deficient human patient’s plasma provided additional support for
apoA-I related complexes. Further biochemical characterization of these putative subspecies may facilitate the mechanistic
research of CVD and guide targeted therapeutics aimed at its mitigation.

KEYWORDS: high-density lipoprotein, proteomics, protein network, comigration pattern, subspecies, apolipoprotein, maximal clique,
human plasma, particle fractionation

■ INTRODUCTION

Plasma high density lipoprotein (HDL) is a highly heteroge-
neous family of particles that ranges from 7−13 nm in
diameter. It is composed of proteins and lipids in approximately
equal mass. HDL has been epidemiologically associated with
protection from atherosclerotic cardiovascular disease (CVD), a
leading cause of mortality around the world.1,2 Recent
proteomics studies have identified upward of 89 distinct
HDL-associated proteins.3−11 Among them, roughly 70% of the
protein mass consists of apolipoprotein (apo)A-I, and another
15−20% is apoA-II. These major HDL proteins form stable
complexes with phospholipids, cholesterol, triglycerides, and
cholesteryl esters. The remaining proteins include other
classical apolipoproteins12 such as apoC-II, C−III, E, D, M,
and A-IV as well as enzymes, transfer proteins, protease
inhibitors, complement factors, and even vitamin-binding
proteins.13

Plasma HDL cholesterol (HDL-C) level is a well-known
negative risk factor for the development of CVD. A widely
accepted basis for the inverse relationship between human

plasma HDL-C and CVD is the ability of HDL, and its major
protein constituent apoA-I, to mediate reverse cholesterol
transport (RCT).14 In this process, HDL promotes cholesterol
efflux from peripheral cells such as macrophage-derived foam
cells in the vessel wall to transport excess cholesterol and other
lipids back to the liver for catabolism. Aside from lipid-transport
activities, recent studies have identified an array of additional
functions that likely contribute to HDL-mediated cardiovas-
cular protection. For example, HDL has been documented to
prevent oxidative modification of LDL via the HDL-associated
protein paraoxonase1 (PON1).15 Another well recognized
HDL function is its role as an anti-inflammatory regulator that
may slow atherosclerosis progression.16−18 Additionally, HDL
can modulate vascular tone by affecting the production of nitric
oxide (NO), a key mediator of vascular smooth muscle cell
contraction.19 These antioxidative, anti-inflammatory, and
provasodilatory properties of HDL might have equal
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importance as its well-known cholesterol efflux function in the
process of protecting against the CVD development.
Recent studies have demonstrated the existence of distinct

HDL subspecies that are defined by unique protein comple-
ments. Asztalos et al. used antibodies to visualize individual
protein migration patterns in a native 2D gel electrophoresis
system and found apoA-I in 11 distinct spots representing
variously charged and sized species.20 In our previous research,
we separated human lipoproteins into five individual fractions
by ultracentrifugation7 and 17 fractions by size exclusion
chromatography8 and again saw highly distinct distribution
patterns for individual proteins. Additionally, there is emerging
evidence that distinct protein particle compositions can result
in defined and unexpected functions. The most impressive
example to date is the HDL particle dubbed trypanosome lytic
factor (TLF).21,22 This particle contains apoA-I, haptoglobin-
related protein (HPR), and apoL-I and has been shown to have
specific lytic activity against the protozoan Trypanosoma brucei.

This activity is absolutely dependent on the presence of these
proteins. Given the widely diverse functions of the HDL-
associated proteins and the fact that HDL’s CVD protection is
mediated through similarly diverse functions, it is reasonable to
believe that many of these subspecies may play unique
biological roles.
Unfortunately, our knowledge of the structure and functions

of HDL subspecies is limited. So far, no existing method can
directly reveal the composition of distinct HDL subspecies.
Density gradient ultracentrifugation (UC) is currently the
preferred method of HDL isolation because density is a major
resolving factor between nonlipid and lipid-bound proteins.
The underlying principle of this method is to quantitatively
float the relatively light lipid-bound proteins away from the
heavy nonlipid associated proteins. However, this method often
involves prolonged, high speed centrifugation steps and the use
of high salt concentrations, which can modify the protein
structure and deplete apolipoproteins from the final isolates. In

Figure 1. Schematic diagram of the systematic approach to identify HDL complexes based on three orthogonal chromatographic separation
techniques. Healthy human plasmas were separated by three separation methods into an array of fractions. For each fraction, MS analysis was
performed to discover the identities and spectral counts of proteins. On the basis of abundance profiles, individual comigration networks were
constructed with our local S-score. A graph mining algorithm was applied to discover protein complexes. After filtration with molecular weight
threshold, multiple validation approaches were utilized to test the putative HDL subspecies.
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addition, the high salt must also be removed for further analysis
of lipoprotein fractions, a process that results in poor
recoveries.23 Furthermore, Van’t Hooft et al. have shown that
more than a half of apoE was disassociated with HDL proteins
during UC.24 All of these issues can interfere with our ability to
identify specific protein−protein interactions (PPIs) on
lipoprotein particles. Thus, there is an urgent need to analyze
the HDL proteome using alternative separation techniques.
In our previous study, we applied three novel, nondensity

based, orthogonal chromatographic separation techniques on
human plasma to better characterize the structural composition
and functions of HDL subspecies.9 These techniques were used
to fractionate normal human plasma into phospholipid-
containing fractions, and the identities of the proteins were
determined using mass spectrometry (MS). The spectral counts
obtained from MS analysis of those fractions correlated well
with protein abundance as determined by immunological
analyses.7 As such, the distribution of each protein across all the
fractions, that is, a migration pattern, was obtained. Our
previous work clearly established that certain HDL proteins
could comigrate across the separation methodologies, suggest-
ing the existence of discrete subspecies. However, our initial
comigration analysis was limited in that it only inferred static
interactions by considering global distribution similarity
between HDL proteins, which may not effectively reflect the
diversity of compositions for distinct HDL subspecies.
Moreover, one global protein network was constructed based
on those static PPIs using the conventional strategy, similar to
several previous large-scale proteomics studies.25−28 This
single-network strategy is certainly beneficial to either uncover
important principles of global protein organization or reveal
novel protein interactions and complexes. However, it simply
assumes spatial−temporal coexistence among nearby network
nodes and edges (proteins and interactions) so that one
identified protein complex may involve multiple smaller protein
complexes in reality. Indeed, in our static protein interaction
network, while certain subnetworks were clearly identifiable, the
majority of the proteins clustered into one single subnetwork,
which limited the utility of the data. Customized network
construction strategies and profound graph mining algorithms
are crucial for further investigation of HDL subspecies.
In this work, we developed a novel multinetwork based

computational approach to systematically identify structural
HDL subspecies (Figure 1). The organization of this article is
as follows. First, we described the proteomics data upon which
our analysis was based followed by the novel scoring system
that quantitatively measured the similarity between two given
proteins’ local distribution patterns. Next, we constructed
individual local comigration networks for all fractions and
searched the HDL complex candidates in those networks.
Finally, we tested those identified candidates using distinct
experimental and computational approaches including literature
search analysis and Gene Ontology (GO) functional enrich-
ment analysis, a mouse HDL study, and a human genetic
disease study.

■ MATERIAL AND METHODS

Lipid-Associated Proteins Distribution Patterns Data Set
from Three Orthogonal Separation Chromatography
Techniques

We developed three nondensity based orthogonal separation
chromatography techniques to fractionate normal human

plasma to phospholipid-containing fractions:9 gel filtration
(GF) chromatography that separates particles by molecular
size; anion exchange (AE) chromatography that separates
particles by charge; and isoelectric focusing (IEF) chromatog-
raphy that separates particles based on the isoelectric point or
the pH at which a particle has a net charge of zero. Considering
the completeness of our current systematic strategy, we briefly
described our published data here. Please refer to ref 9 for more
experimental details. We recruited three healthy male blood
donors and separated their plasma using all three separation
techniques. Lipid-associated proteins were isolated, and their
distributions across fractions were determined using high-
performance liquid chromatography/electrospray ionization
tandem MS (HPLC−ESI−MS/MS). GF separated each plasma
sample into 17 successive size-based fractions across which 106
lipid-associated proteins were identified. The AE method
separated plasma samples into 21 fractions and identified 140
lipid-associated proteins. IEF method identified 93 proteins in
20 fractions.

Human apoA-I Deficiency Disease Study

An apoA-I deficient female participant (age 40) was paired with
a control female participant (age 43). Both subjects have no
known CVD, body mass indexes (BMIs) in the normal range,
and normal blood pressure. Venous blood was collected from
participants after a 12-h fast by a trained phlebotomist using
BD Vacutainer Plus Plastic Citrate Tubes containing buffered
sodium citrate (0.105 M) as an anticoagulant. Cellular
components were pelleted by centrifugation at ∼1590g for 15
min in a Horizon mini-E (Quest Diagnostics) at room
temperature. Plasma was stored at 4 °C until applied to the
GF separation technique, always within 16 h. Details of GF
assays are the same as in our previous work.8 Samples were
never frozen. Written consent was obtained from participants in
compliance with institutional regulations. Compositional
analysis of lipoprotein fractions was assayed for these two
subjects. HPLC−ESI−MS/MS was used to determine the
distribution patterns for proteins across fractions.

HDL Watch List

A comprehensive HDL-associated proteins watch list is being
continuously maintained and updated by the Davidson lab at
http://homepages.uc.edu/~davidswm/HDLproteome.html.
The most up-to-date list has tracked 89 “likely” HDL proteins
of 224 proteins from 16 independent studies, where likely HDL
proteins are defined as those that appeared in at least three
studies from three independent laboratories.

Local Spearman’s Rank Correlation Coefficient Score

Local Spearman’s rank correlation coefficient Score (S-score)
was based on the Spearman’s rank correlation coefficient of the
local migration patterns, which is more tolerant to errors in low
spectral counts produced by low-abundance proteins. To reflect
the local similarity, a sliding window w was utilized to restrict
the abundance profiles within a certain range of fractions.
Because of individual differences, we normalize the protein
abundance profile by dividing the maximum of spectral counts
of all fractions for any given protein in one plasma sample.
Suppose we have a protein abundance profile X =
(X1,...,Xi,...,Xn) where Xi is the normalized spectral count of
protein Px in the fraction i. For each fraction i, we only
considered the normalized protein spectral counts within the
sliding window of w fractions [i − (1/2)(w − 1),...,i + (1/2)(w
− 1)], averaged from all v plasma samples into one abundance

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.5b00419
J. Proteome Res. 2015, 14, 3082−3094

3084

http://homepages.uc.edu/~davidswm/HDLproteome.html
http://dx.doi.org/10.1021/acs.jproteome.5b00419


vector. The total number of fractions is w, and the index j
denotes the jth fraction in the local abundance vector. Then, for
each protein pair (Px, Py) in the fraction i, the local S-score for a
given separation method was calculated by

=
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where xj and yj are abundance ranks, obtained from the
normalized spectral counts Xj and Yj of the protein pair (Px, Py)
in the jth fraction for all plasma samples from one separation
approach. Local S-score is a real number in the range of [−1,
1]. Local S-score is highly effective at measuring a monotonic
similarity between variables by considering the rank of
normalized abundance levels, and it also alleviates the bias
against low-abundance proteins.
Functional Enrichment Analysis

We collected function annotations of human HDL-associated
proteins from the GO Web site. For each of the identified
subparticle candidates, to examine whether it is enriched within
a certain function, we used the hypergeometric test to test the
null hypothesis that proteins within one subparticle were picked
randomly from the 89 master HDL proteins list. The p-values
were calculated by
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where n is the total number of genes on the watch list, m is the
number of genes in the clique, p is the number of genes on our
watch list associated with the given GO term, and q is the
number of genes in this clique that were also associated with
that GO term. The smaller the p-value is, the more significant
the clique is enriched with the given function.

Lag-Score

We developed a lag-score (L-score), reflecting a quantitatively
shifted distribution for a given protein. Although our local S-
score is also able to detect the local dissimilarities between the
migration patterns for any given fraction, our L-score is able to
measure the global pattern differences in term of the shifted
fractions across all the fractions. The L-score was calculated
based on time-lag between the normalized aggregated
abundance profiles for protein Px from wild type (WT) and
gene knockout (KO) mice groups. Time-lag is a concept in
electronic signal processing to measure the shift between two
signals. We applied this concept here to discover the migration
patterns change between WT and KO groups. Assuming mWT

Figure 2. Abundance profile examples of multiple HDL-associated proteins and number of proteins detected by MS within each fraction from the
separation method (a,b) GF, (c,d) AE, and (e,f) IEF.
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mice and n KO mice, L-score Lx of a given protein Px between
WT and KO groups was obtained by

∑ ∑
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where Xwt
k ,Xko

l are the normalized spectral counts vectors (i.e.,
abundance profiles) of protein Px from kth WT mouse and lth
KO mouse, respectively. Also, μ = max(Σk = 1

m Xwt
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l ). is time-lag function to calculate signal lag in
signal processing with cross-correlation. Cross-correlation is a
similarity measure between two waveforms as one of them has
time lag from the other. For discrete functions, the cross-
correlation is an array defined as
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where f*[m] denotes the complex conjugate of f, and m is the
time-lag. Time-lag f g( , ) between two signals is the distance
between the center and the maximum of the cross-correlation
vector. Larger L-score indicates more significant fractions shifts
of protein migration pattern due to the ablation of genes. L-
score is an integer, either positive or negative, reflecting
distribution shifts positively or negatively.
Spoke and Matrix PPIs Models

A spoke model assumes all impacted proteins in Tables 2 and 3
only interact with the absent protein (Figure S1a, Supporting
Information). It is a direct interpretation of gene knockout
experiments. In contrast, a matrix model assumes interactions
among all proteins, including absent and pattern shifted
proteins (Figure S1b, Supporting Information). We established
three matrices to represent all interactions among all proteins
(absent and pattern-shifted proteins). By using either model,
PPIs derived from gene knockout experiments are able to serve
as direct pieces of evidence that two interacting proteins may
colocalize within the same subparticle. Thus, we directly
utilized the number of edges (PPIs) being supported by the
matrix and spoke models as the evidence in Table 1.

■ RESULTS

Fractionation of HDL Proteomics Data Set

Lipid associated proteins’ distribution data set (see Material
and Methods) was obtained in our previous study,9 where
healthy human plasma was fractionated by three optimized
nondensity based orthogonal chromatographic separation
techniques (GF, AE, and IEF). We first filtered an HDL-
associated protein data set from original lipid associated protein
data. Many research groups have used different proteomic
techniques to study HDL compositions, and each approach
assessing HDL fractionation reflected specific physicochemical
properties of the particles such as density, size, and electro-
phoretic mobility. Because of the differences in HDL separation
techniques, sample preparation, and instruments, the total list
of HDL proteins varies dramatically from study to study. We
have compared the existing data from 16 proteomics studies
published to date and compiled a list of 89 high-confidence
HDL-associated proteins that were observed in at least three
different studies or have independent biochemical evidence of
HDL residence (see Material and Methods). Therefore, we
mainly focused on these 89 high-confidence HDL-associated
proteins here and removed other data.

Abundance profiles of several known HDL-associated
proteins from three separation techniques were presented
(Figure 2a,c,e). As expected, the most abundant protein, apoA-
I, occurred in nearly every fraction, while other apolipoproteins
displayed relatively distinct distributions. Intriguingly, we
noticed that only a portion of proteins co-occurred when we
took a closer look at any individual fraction (Figure 2b,d,f).
Additionally, many proteins, except the abundant ones, only
existed in certain fractions rather than across the whole
spectrum. The diversity of these proteins’ distributions
implicitly reflected the heterogeneity of HDL subspecies.
HDL proteins coexisting within the same subparticles should
travel together during the plasma separation; thus, proteins on a
given subparticle are likely to be detected by MS in the same
fraction. Hence, we first separated all proteins discovered in our
experiments into different groups based on their coexistence in
individual fractions. Consequently, the entire proteomics data
pool was divided into 58 subsets based on GF (17 fractions),
AE (21 fractions), and IEF (20 fractions) separation
techniques. Although the total number of identified proteins
in the three separation methods was 159, proteins coexisting
within the individual fraction were commonly fewer than 40. It
is possible that those coexisting proteins may come from more
than one subspecies. However, the separation of detected
proteins into subsets effectively distinguished “likely” and
“unlikely” colocalized proteins. With the help of the following
analyses, we were able to uncover the composition of certain
subspecies.

Construction and Graph Analysis of Local Comigration
Networks To Identify HDL Subspecies

Individual comigration networks were constructed for each
fraction from the different separation techniques to represent
the comigration relationship between any pair of HDL proteins.
Vertices of the network for a given fraction represented MS-
detected HDL-associated proteins. Edges between vertices
represented the local comigration relationship, and each one is
associated with a similarity score. Here, we developed a novel
score, named local Spearman’s rank correlation coefficient score
(local S-score) (see Material and Methods) to quantitatively
measure such local similarities (Figure 3). Conventionally,
variables with a correlation coefficient larger than 0.8 are
regarded as strongly correlated. As such, we chose the similarity
threshold of 0.8 to transfer our weighted graphs to binary
graphs. By using this multinetwork strategy, we constructed a
total of 58 protein local comigration networks (17, 21, and 20
networks for GF, AE, and IEF techniques, respectively). Those
58 comigration networks have very diverse topologies,
indicating the heterogeneity of subspecies’ composition. To
illustrate the overall structure of the HDL interactome, we
merged the 58 comigration networks to form a comprehensive
HDL interactome map that contains 70 proteins, 1540 edges
(Figure S2, Supporting Information).
Within each comigration network, if all proteins included in

one subspecies have similar migration patterns, they tend to
form a highly connected cohesive network module. In graph
theory, a clique in a network is a fully connected subset of the
vertices where every two nodes in this subset are connected by
an edge. A maximal clique is a clique that cannot be extended
by including any more adjacent nodes, and it has been applied
in protein networks to discover core network elements.29 The
maximal clique concept fits well with our purpose of
discovering such highly connected cohesive modules. Figure 4
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illustrates a local comigration network constructed for 19th
fraction of GF method and one of maximal cliques within this
network. In this study, we identified all maximal cliques using
the Bron−Kerbosch algorithm30 from individual comigration
networks. Please note that we required a clique to contain at
least three nodes as a protein complex and dismissed all two-
node cliques that represent pairwise PPIs. Those discovered
maximal cliques represented the likely protein complex
candidates and were subject to further validation as follows.
The molecular weight was applied as a filter to remove any

unlikely candidate. The molecular weight of an HDL complex is
usually observed to be less than 400 000 Da, including roughly
50% (by mass) HDL-associated proteins and 50% (by mass)
lipids.31,32 Accordingly, we set a conservative upper limit of
molecular weight for HDL subspecies as 200 000 Da. After all
cliques were filtered with this molecular weight threshold, 183
candidates (Table S1, Supporting Information) were selected
for further investigation. Because of the inability to directly
observe a given subspecies, we had to look for multiple lines of
indirect evidence to test identified subspecies candidates. We
tested those subspecies with six lines of evidence, including:
literature analysis, GO functional analysis, two PPIs models
based on our mouse HDL study, and two PPIs models based
on our human genetic deficiency disease study. Finally, we
presented 38 putative HDL subspecies that are supported by at

least three lines of evidence (Table 1). In the following
sections, we present independent lines of evidence that support
the validity of the identified putative HDL subspecies.

Comparison of Our Local-Network Approach with Four
Traditional Methods on Network Construction and Clique
Identification

We first assessed the accuracy of the predicted HDL
interactome network based on known HDL PPIs deposited
in the Human Protein Reference Database (HPRD), where all
PPIs were collected from published literature based on
experiments (e.g., yeast-2-hybrid, co-IP, etc.) and manually
curated to avoid errors.33 The 352 PPIs involving 64 HDL
proteins represent a comprehensive collection of known HDL
PPIs, and we believed it is an ideal data set to test the coverage
of our predictions in terms of pairwise interactions. All the
reported PPIs related to HDL-associated proteins were used as
positive instances, and all unreported ones were treated as
negative instances.
On the basis of this gold-standard data set, we compared the

performance of our local-network method to a simpler, more
widely used method (i.e., constructing a single-network with a
global similarity score derived based on distribution across all
fractions) in terms of PPIs prediction. We tested the PPIs
prediction on the traditional model and our models with
various sliding windows w. Figure 5 shows receiver operating
characteristic (ROC) curves, common graphical plots illustrat-
ing the performance of a binary classifier. For each predictive
model, we calculated the area under the curve (AUC), which is
equal to the probability that a given scoring system will return a
higher score for a random positive PPI than the one for a
random negative PPI. The higher the AUC, the better a
predictive method. Our local-network models with (w = 5 or w
= 7) had the highest AUC of 0.71, while the AUC of the model
(w = 3) was 0.69. In contrast, the AUC of the traditional score
was 0.65. The results indicate our local-network method has a
better performance in predicting PPIs. Since the smaller sliding
window requires less computational time, (w = 5) sliding
window becomes the preferred parameter in the following
analyses.
Alternatively, we conducted an analysis to construct three

PPI networks from three separation methods (see Supporting
Information, Figure S3a−c) and only considered the over-
lapping edges among all networks. The consensus network only
consists of five well-known PPIs with negligible coverage (5/
352) of known HDL PPIs (Figure S3d, Supporting
Information). This comparison suggests that our local-network
method was tolerant of a potential artifactual lack of
comigration due to experimental perturbation in one of the
separations; thus, the failure of a given complex to survive one
of the separations does not necessarily preclude the
identification of the subspecies. Each of the separation methods
has drawbacks that can potentially perturb particle migration or
integrity, for example, dilution effects in GF and salt effects in
AE. The conventional method that only considers the
simultaneously coassociated protein pairs among all three
separation methods may yield a very limited number of PPIs.
In the third comparison, we found many PPIs that can only

be discovered by our method but not a traditional method. In
our previous study,9 we have applied a traditional global
correlation analysis across all fractions to identify a few highly
correlated protein pairs, for example, fibrinogen alpha chain
(FGA):fibrinogen beta chain (FGB), FGB:fibrinogen gamma

Figure 3. Rationale of local S-score for capturing the local similarity of
proteins’ migration patterns. (a) The mechanism of our separation
methods utilizes different characteristics of each subspecies to create
their specific distributions, that is, migration patterns. For example, in
the GF approach, larger size subparticles are likely to migrate fast and
fall into early fractions, while smaller size ones would be detected in
the following fractions. (b) Successive neighboring fractions may
contain the same type of particles. The same subparticles may
distribute among multiple neighboring fractions in a specific pattern,
for example, one subparticle containing proteins A, B, and C may
distribute as shown in the figure. (c) Those proteins within the same
subspecies are likely to have highly similar migration patterns locally.
This local similarity may be only reflected within a certain range of
fractions, that is, sliding window.
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chain (FGG), and apoA-I:apoA-II.9 The top ranked pairs
discovered in our previous study were confirmed once again in
this work. In addition to those pairs, our new score is able to
reveal more comigrated relations that could not be reflected in
conventional correlation analysis. For example, apoA-I: apoL-I,
an interaction observed in other independent studies,21,22 and
in our human apoA-I deficiency study, was discovered by our
local comigration analyses in several fractions. However, the
migration patterns of apoA-I and apoL-I were not strongly
correlated across all fractions, and therefore the interaction was
not identified in our previous study.
Finally, we explored whether distinct HDL complexes could

be uncovered from the densely connected merged HDL
interactome (Figure S2, Supporting Information) rather than
from 58 individual local networks. We noted that the
complexes identified by the graph mining algorithms in such
a densely connected network often have molecular weights that
are too large for HDL particles. This may be due to that HDL
proteins, especially the abundant ones, are likely to participate
in different subparticles and interact with distinct proteins8,9,34

so that the traditional single-network strategy is likely to
uncover a large protein complex that involves multiple
subparticles in reality. Apparently, such diverse characteristics
of HDL complexes cannot be properly represented with static
links in one conglomerate protein interactome map.35

Each of the Putative HDL Subspecies Has at Least Two
Literature Supports

We first examined the PPIs within identified HDL complexes
using the reported PPIs in HPRD database. The complexes
with more reported PPIs are likely to exist in reality. Each of 38
HDL subspecies has multiple literature supports. With the
HPRD database and literature review, we presented the number
of PPIs supported by literature for each individual HDL
subspecies in Table 1.

The most recognized HDL subparticle, the TLF particle
(apoA-I, apoL-I, and HPR) was discovered from several
fractions in our analysis, demonstrating the effectiveness of
our systematic strategy. The network in Figure 4 is one of the
comigration networks containing this TLF particle. Our local S-
score between apoL-I and HPR was up to 0.97 (p-value =
0.017). In contrast, we performed coexpression-based PPI
prediction on STRING36 by querying either apoL-I or HPR,
and PPI between apoL-I and HPR was not presented. Also, the
traditional global score between apoL-I and HPR reported in
our previous work is only up to 0.72 among three separation
methods, below the required correlation threshold of 0.8.
We also looked for other independent studies to support the

existence of our subparticle candidates. One example is the
apoA-I, apoC-I, and apoE complex.37,38 It has been reported
that apoC-I binds free fatty acids and reduces their intracellular
esterification, and its function to modulate the interaction of
apoE and beta-migrating VLDL.39 At the same time, apoE and
apoA-I binding to ATP-binding cassette, subfamily A member 1
(ABCA1) is essential for the HDL formation.40 ApoA-I mainly
works in the cholesterol efflux process, and many studies have
supported the idea that apoC-I and apoE may work together
with apoA-I to help with lipid metabolism. We may infer from
this prior knowledge that the complex (apoA-I, apoC-I, and
apoE) may exist in certain molecular processes.
Another example is complex (apoA-I, apoA-II, Complement

factor B, and Transthyretin), whose all pairwise PPIs were
supported by literature. Transthyretin (TTR), the plasma
carrier for both thyroxine and retinol, has connections to apoA-
I.41,42 TTR was shown to affect HDL biology and the
development of atherosclerosis by reducing cholesterol efflux
and increasing the apoA-I amyloidogenic potential.43 It was
shown that TTR can cleave apoA-I, decreasing its ability to
promote cholesterol efflux from cholesterol-loaded macro-

Figure 4. A local comigration network constructed for 19th fraction of GF method. Size of the vertex reflects network degree of this vertex. Circled
subnet is a maximal clique within this network, corresponding to the well-known TLF particle.
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phages.44 Moreover, the apoA-I cleaved by TTR has reduced
affinity for ABCA1, as assessed by cross-linking.45 These
support the notion that this particle may exist and play a critical
role in cholesterol efflux.

Diverse Biological Functions of HDL Complexes

Being enriched for biological functions supports the existence
of the protein complex candidates. For each of the identified
subspecies, to examine whether it is enriched for certain GO
terms, the hypergeometric test was used to test the significance
against the null hypothesis, that is, all proteins clustered as one
subparticle were picked randomly from the HDL watch list (see
Material and Methods). In Table 1, we only listed the p-value
corresponding to the most significant GO terms. Of the 38
subspecies candidates, 31 have significantly enriched functions
after Benjamini correction (p-value < 0.01). Take the case of
subparticle (apoA-I, apoA-II, and apoA-IV), for example, with
the most significant annotation of “regulation of intestinal
cholesterol absorption” (p-value: 5.37 × 10−04). Its individual
members commonly participate in the cholesterol metabolism

Table 1. Putative HDL Subspecies That Are Supported by at Least Three Lines of Evidence

size subspecies literature
GO

enrichment
mouse
matrix

mouse
spoke

human
matrix

human
spoke

3 APOA1 CLU HPR 2 3.92 × 10−03 1 1 3 2
3 APOA1 APOL1 CLU 2 3.92 × 10−03 1 1 3 2
3 APOA1 APOL1 HPR 2 5.87 × 10−02 0 0 3 2
3 APOA1 APOE SERPING1 3 6.17 × 10−03 3 2 0 0
3 APOA1 APOE ITIH1 3 6.17 × 10−03 3 2 0 0
3 APOA1 APOC3 PON1 2 6.17 × 10−03 3 2 3 2
3 APOA1 CLU SERPIND1 2 3.92 × 10−03 3 2 1 1
3 APOA1 APOC2 GPLD1 2 1.38 × 10−02 3 1 3 2
3 APOA1 APOA2 APOC1 3 2.49 × 10−03 3 3 3 2
3 APOA1 APOC3 APOE 3 4.05 × 10−04 3 2 1 1
3 APOA1 APOA2 ITIH1 3 3.92 × 10−03 3 3 1 1
3 APOA1 APOC3 CLU 3 3.92 × 10−03 3 2 3 2
3 APOA1 APOA2 APOC3 3 4.05 × 10−04 3 3 3 2
3 APOA1 APOC1 CLU 3 3.92 × 10−03 3 2 3 2
3 APOA1 APOC2 APOC3 3 1.62 × 10−03 3 1 3 2
3 APOA1 APOC1 APOE 3 2.49 × 10−03 3 2 1 1
3 APOA1 APOC2 PON1 2 1.38 × 10−02 3 1 3 2
3 APOA1 APOA2 APOA4 3 4.05 × 10−04 2 2 1 1
4 ALB APOA1 APOE SERPING1 6 8.95 × 10−03 3 2 0 0
4 APOA1 APOC1 APOC3 HP 6 5.92 × 10−03 4 2 3 2
4 APOA1 AHSG HPX SERPIND1 4 8.84 × 10−02 3 2 1 1
4 ALB APOA1 APOC1 CFB 6 1.56 × 10−02 3 2 1 1
4 ALB APOA1 APOA2 APOC1 6 3.92 × 10−03 3 3 3 2
4 ALB APOA1 APOC1 HPR 4 1.56 × 10−02 1 1 3 2
4 APOA1 APOA2 CLU F2 4 6.00 × 10−03 3 3 3 2
4 APOA1 APOC1 APOE GSN 6 3.92 × 10−03 3 2 1 1
4 APOA1 APOA2 CFB TTR 6 6.00 × 10−03 2 2 1 1
5 APOA1 APOA2 APOC3 SERPING1 IGHG1 10 1.62 × 10−03 5 4 3 2
5 APOA1 APOA2 APOA4 IGHG1 PON1 7 1.62 × 10−03 4 4 3 2
5 APOA1 APOA2 APOE IGHG1 F2 10 3.92 × 10−03 3 3 1 1
5 APOA1 APOA2 APOC3 F2 TTR 10 1.62 × 10−03 3 3 3 2
5 APOA1 APOA2 CLU F2 TTR 8 6.35 × 10−03 3 3 3 2
5 APOA2 APOC3 APOM F2 TTR 6 6.35 × 10−03 3 2 3 0
5 APOA2 APOM CLU F2 TTR 4 1.38 × 10−02 3 2 3 0
5 APOA1 AHSG HP SERPING1 TTR 10 8.01 × 10−02 3 2 1 1
5 APOA1 APOA2 APOA4 HPX SERPIND1 7 1.62 × 10−03 3 3 1 1
5 APOA1 APOA2 CFB HP TTR 10 6.35 × 10−03 3 2 1 1
5 APOA1 APOC3 CFB CLU TTR 9 6.35 × 10−03 6 3 3 2

Figure 5. ROC curves for the traditional score and our local S-score
with various sliding windows w.
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process,46−48 suggesting that this subparticle may exist in nature
and perform a specific metabolic function.
To examine the variety of GO terms enriched among the 183

subparticle candidates, we summarized the frequency of the
most significant GO terms associated with individual putative
subspecies in Figure 6. Several enriched GO terms of identified

subparticles turn out to be the annotation of fundamental
biological processes. Those functions are essential to keep the
normal cellular activity, for example, “positive regulation of
heterotypic cell−cell adhesion”. On the other hand, several
other enriched functions are consistent with previously known
HDL functions such as “reverse cholesterol transport”,
“antioxidation”, “immune response”, and “hemostasis”.
Although the CVD protective functions have been the major
focus of various HDL studies, our results suggested that distinct
HDL subspecies may be responsible for different function-
alities, from fundamental biological functions to CVD-
protective functions. We are aware that the current GO
knowledge may be incomplete; however, since it was not our

intention to discover new HDL biological functions based on
the current GO knowledge, the GO enrichment analysis
primarily served the purpose to validate reasonable protein
clustering in that irrelevant proteins in term of GO functions
should not dominate the candidate subparticles.

Validation of HDL Subspecies Using a Mouse HDL Study

To study the composition of HDL subspecies, we have utilized
a data set from our mouse HDL study49 and analyzed protein
distribution patterns of mice when three major HDL-associated
genes (APOA1, APOA2, and APOA4) were knocked out
individually. The mouse model is an invaluable system for the
study of genetic effects on lipoprotein metabolism. Their
plasma contains lipoproteins that are roughly similar to those in
the human in terms of protein and lipid composition.50 Plasma
separation and MS analysis assays were performed for three
WT mice and three KO mice in three genetic knockout
experiments, respectively. Please refer to ref 49 for more
experimental details on our mouse HDL study. Here, we
hypothesized that two proteins are likely to coexist on the same
protein complex if one of them has a shifted distribution after
another is absent (Figure S4a, Supporting Information). On the
other hand, two proteins are less likely to coexist on the same
particle if one protein has no distribution change after another
is ablated (Figure S4b, Supporting Information). To
quantitatively evaluate the shifting of the proteins’ distribution
patterns, we developed a lag-score (L-score) migration pattern
shift analysis (see Material and Methods). Proteins with |L| ≥ 1
were identified as influenced proteins. Then, the identified
mouse proteins were mapped back to human HDL-associated
proteins by sequence homology.
With our L-score, we inferred 26, 16, and 4 human HDL-

associated proteins from the mouse HDL study with the
ablation of APOA1, APOA2, and APOA4, respectively. All
influenced proteins and their corresponding L-scores are listed
in Table 2. The absolute value of L-score indicates the
significance level of pattern changes. Small absolute value
indicates that only subtle changes were detected, while large
absolute value indicates obvious change of the migration
patterns. Proteins were ranked with the absolute value of L-
score. The ablation of APOA1 had a significant impact on the
distribution of 26 other HDL-associated proteins. The ablation
of APOA2 had a smaller effect on 16 mapped HDL-associated
proteins. Only apoA-II, apoC-III, HPR, and Haptoglobin (HP)
were identified during the protein mapping according to the
APOA4 knockout experiment. Both spoke and matrix PPIs
models27 were adopted to determine the validity of the
identified subspecies (see Material and Methods). Among 38
putative complexes, 37 subparticles are supported by at least
one PPI with the spoke PPIs model, while 37 subspecies have at
least one PPI supported by the matrix PPIs model (Table 1).

Validation of the Identified Subspecies with Human apoA-I
Deficiency Disease Study

To provide further information in the human system, we
obtained a plasma sample from a patient with familial apoA-I
deficiency. The genetic deficiency of apoA-I is extremely rare
and has been reported in only 16 families throughout the
world.51 Because of the rarity of this type of mutation in
humans, larger-scale studies on this population would be
extremely difficult, and we were able to recruit only one
participant for this study. It is also interesting to note that
although these patients have markedly reduced plasma HDL-C
levels, usually around 20−25 mg/dL, there is no clear

Figure 6. Histogram of the most significantly enriched functions of 38
identified HDL subspecies. Distribution of the functions covers both
fundamental biological functions and CVD-protective functions.
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association with an increased occurrence of CVDs.34 Similar to
the rationale of the mouse model study, the deficient proteins
are likely to disrupt the formation or at least change the
molecular size of the corresponding subspecies. Details of
assays are described in the Material and Methods. Forty-one
known HDL-associated proteins were identified among a total
of 103 MS-detected proteins.
Migration pattern shift analysis was performed similar to that

conducted in the mouse study. Of the 41 MS-detected HDL-
associated proteins, 16 were determined to have a shift in
distribution patterns with L-score (|Lx| ≥ 1) (Table 3). Proteins
were ranked with the absolute value of L-score. Some migration
pattern comparison examples are shown in Figure S5 of the
Supporting Information. ApoA-I migration patterns were first
provided to show the lack of apoA-I in the patient compared to
the healthy control. Another major protein, apoA-II, was
detected with minor shift in our analysis (L-score = −1). Next,
we found that both HPR and apoL-I cannot be detected in the
lipoprotein fractions of the patient plasma, which is consistent
with the TLF particle reported by Rifkin and Raper et al.21,22

Additionally, apoC-I and apoC-II’s migration patterns were
shifted similarly (L-score = 8), suggesting that they may coexist
with apoA-I on certain complexes. Indeed, subparticle (apoA-I,
apoC-I, and apoC-II) was discovered in our analysis (Table 1).
Again, both matrix and spoke PPIs models were adopted for

this apoA-I deficiency study to test the identified subspecies.
Thirty-three of the 37 subparticles containing apoA-I had at

least one PPI directly supported by the spoke model. With the
matrix model, 35 subspecies had at least one PPI being
supported.

■ DISCUSSION
In this study, we systematically identified and characterized
structural HDL subspecies through analysis of proteins’
comigration patterns generated by three orthogonal chromato-
graphic separation techniques. Current studies of HDL
proteomics are few and are limited in that, by only looking at
pools of total HDL or very broad density subsets (i.e., HDL2 or
HDL3), they do not take into account the heterogeneity of the
HDL population. In contrast, our proteomic experiments
fractionated the total HDL pool more extensively to enable
discrimination between distinct subspecies. Greater fractiona-
tion of the total HDL population allows us to examine protein
variances between particles more closely and identify specific
HDL subspecies. To take full advantage of our separation
techniques, a multinetwork-based approach was employed to
study subspecies composition. This work is novel in the
following respects.
First, most existing studies on HDL complexes, including our

previous work, are limited by focusing on pairwise HDL PPIs.
In contrast, our research aimed at systematically inferring HDL
subspecies by identifying protein complexes. A major difficulty
in the current attempts to study HDL subspecies is the lack of a
direct experimental approach to reveal and validate the protein
composition in individual subspecies. As such, we proposed an
integrative approach by combining experimental fractionation,
computational inference, and multidimensional validation. In
this paper, we presented 38 candidate protein complexes, which
have not been published before.
Second, to achieve our goal of identifying protein complexes

in HDL subspecies, we reanalyzed our previously published
proteomics data by deploying novel computational approaches.
For example, we developed a novel local S-score, which
maximally captures the migration similarities between proteins’
abundance profiles, and a multinetwork strategy to construct 58
local comigration networks for individual fractions, rather than
one conglomerate protein network, for increasing the
resolution for subspecies discovery. These novel approaches

Table 2. Human HDL-Associated Proteins Identified in the
Migration Pattern Shifting Analysis. Each Column Lists All
the Influenced Proteins, Ranked by Absolute Value of Their
L-Scores, Due to the Absence of One Apolipoprotein in the
Mouse Model

apoA-I apoA-II apoA-IV

influenced
proteins L-score

influenced
proteins L-score

influenced
proteins L-score

SAA4 10 APOC1 12 APOA2 1
AZGP1 9 APOC2 11 HP 1
PON1 6 APOC3 2 HPR 1
GPLD1 2 GPLD1 2 APOC3 −1
APOC3 −2 APOA1 1
AHSG −1 APOE 1
AMBP −1 APOM 1
APOC1 −1 AZGP1 1
APOE −1 ITIH2 1
CLU −1 ITIH1 1
C1S −1 ITIH4 1
C9 −1 AMBP 1
CFB −1 PON1 1
C2 −1 CLU −1
ITIH2 −1 C9 −1
ITIH1 −1 CFH −1
LUM −1
PGLYRP2 −1
SERPINA1 −1
SERPINA3 −1
SERPING1 −1
SERPINA4 −1
SERPINF1 −1
SERPINC1 −1
SERPIND1 −1
SERPINF2 −1

Table 3. Human apoA-I Deficiency Influenced HDL-
Associated Proteins. Proteins Were Ranked by the Absolute
Values of Their L-Scores

influenced proteins L-score

APOL1 10
GPLD1 10
APOC1 8
APOC2 8
SAA4 8
HPR 6
APOM 4
APOC3 3
PON1 −3
APOA2 −1
APOH −1
CLU −1
AHSG −1
ITIH4 1
KLKB1 −1
RBP4 −1
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enable us to infer distinguishable HDL subspecies in the
analyses.
Finally, multidimensional substantial experiments as well as

computational analysis were performed to test the validity of
the identified subspecies in this study. Gene knockout data sets
from APOA1, APOA2, and APOA4 deficient mice were utilized.
Analyses results have not been published, although the
experimental details were discussed in our previous work.
Furthermore, a novel human genetic deficiency study was
applied for our complex validation. In this study, one apoA-I
deficient patient was studied to look at the associated
complexes. Additionally, literature searching and GO functional
enrichment were used to test our putative complexes. The
putative HDL complexes with multiple pieces of evidence from
the validations are the highly confident candidates for future
biochemical studies aimed at determining HDL protein
physical interactions or colocalization, for example, immuno-
precipitation.
Because of the limitation of discover-type MS proteomics

experiment, some low-abundance HDL-associated proteins
were not found in our MS scanning, such as phospholipid
transfer protein (PLTP). A targeted MS/MS scanning may
improve data acquisition quality. In spite of the missing
peptides in the MS scanning, it is fortunate that our analysis
pipeline is independent of the completeness of MS data. Our
identified putative HDL complexes in Table 1 would not be
compromised since they may only represent subsets (sub-
particles) of HDL particles in nature.
Our future work will focus on associating the putative

subspecies to their biological functions. Particularly, we are
more interested in those low-abundance proteins that are newly
identified. One idea is that apoA-I and apoA-II act as organizing
scaffolds for proteins that principally mediate the classical lipid
transport roles of HDL.52,53 However, lower-abundance
proteins, many of which have putative functions that differ
quite significantly from lipid transport, may represent the most
promising candidates for participation in distinct HDL
subspecies. Indeed, this has been demonstrated in the case of
the TLF particle, which contains HPR and apoL-I.21,22 This
particle clearly plays a major role in innate immune function
with an abundance level too low to play a meaningful role in
lipid transport. Further studies will be needed to determine if
some of the putative subspecies identified here have similar
distinctive functions.
Overall, our work is the first report that employs MS-

determined local comigration patterns and graph pattern
mining to systematically infer HDL subspecies with individual
high-resolution networks. It uncovered the composition of
some HDL subspecies with a novel multinetwork computa-
tional approach. Our work also has significant implications in
current cardiovascular disease research. A better understanding
of the HDL subspecies that are either protective against or
permissive to CVD will lead directly to new diagnostic tests for
these species. For example, if we find that a particular
subspecies is correlated with the development of CVD, we
can envision screening CVD patients for this deleterious HDL
subspecies in a clinical assay. Furthermore, existing therapeutics
tend to boost HDL-C levels indiscriminately without regard for
functions; and since HDL comprises numerous particle
populations, simply raising HDL-C may increase the wrong
sorts of particles at the expense of the cardio-protective ones.
Therefore, identification of CVD-protective HDL subspecies

may help focus on new HDL-raising therapies that offer more
specificity than those currently under exploration.
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